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The nature of the gaps in the electronic energy spectrum 
of liquid-like one-dimensional systems? 

J. HORI 
Department of Physics, Hokkaido University, Sapporo, Japan 
MS. received 20th September 1967, in revisedform 20th December 1967 

Abstract. It  is shown that the gaps which appear in the energy spectrum of a liquid- 
like disordered Kronig-Penney model can be explained as the energy intervals in 
which the phase distributions for the forward and the backward directions are almost 
or completely non-overlapping. Inasmuch as such a non-overlapping is intimately 
related to the strong localization of eigenfunctions, this explains at the same time why 
the wave functions near these gaps are particularly strongly localized. 

1. Introduction 
There have been several numerical investigations on the energy spectrum of the 

Kronig-Penney model with a liquid-type disorder (Makinson and Roberts 1960, Roberts 
1963, Borland and Bird 1964). It has been found that when the disorder is sufficiently 
slight, there appear several energy gaps which are much wider than predicted by the phase 
theory (Hori 1968). The  nature of these gaps has not yet been clarified, however. It has 
been found also that the wave functions are very strongly localized near these gaps. Some 
discussions have been given on the phenomenon of localization upon the basis of the 
variation of the phase along the system or the phase distribution thereon (Roberts and 
Makinson 1962, Borland 1963, Hori 1968), but no attempt seems to have been made to 
explain the appearance of the wide gaps upon the same basis. The  purpose of the present 
paper is to explain the appearance of the gaps and the strong localization of the wave 
functions simultaneously on the basis of the behaviour of the phase on the system. 

In  a previous paper (Hori and Minami 1967, to be referred to as HM) we presented a 
phase-theoretical formalism by which the phenomenon of localization of the eigenmodes 
in the disordered one-dimensional systems can be conveniently discussed in terms of the 
phase distributions thereon. It was shown that the localization occurs as a result of the 
fact that in the disordered chains the phase distributions have a strong tendency to be 
concentrated in the L regions of the transfer matrices describing the system. It was also 
shown that, for each transfer matrix, the L regions for the forward and backward transfers 
must be mirror images of each other with respect to a point of symmetry. From these it 
can be concluded, as will be shown in 4 3 of this paper, that if their concentration in the 
L regions is very strong the distributions for the forward and backward transfers tend to 
become almost or completely non-overlapping, provided a certain condition concerning 
the geometrical arrangement of the L regions is satisfied. 

An energy interval throughout which the forward and backward distributions are almost 
or completely non-overlapping must be a quasi- or true spectral gap, since then the phase 
matching is very difficult to obtain or cannot occur between the solutions constructed from 
the opposite ends of the system. I t  will be shown in 4 4 that the gaps in the spectrum of 
the liquid-like Kronig-Penney model which were found numerically just correspond to the 
energy intervals in which the complete or almost non-overlapping of the phase distributions 
occurs. Inasmuch as a strong concentration in the L regions implies a strong localization 
of the wave functions, this explains in a very natural way why the eigenfunctions near the 
gaps are particularly strongly localized. 

I n  $ 2  the theory presented in H M  is reproduced somewhat in detail, in order to 
compensate for the too concise description in H M  necessitated by severe restriction of 

t This work was done during the author’s stay at the Mathematics Division of the National 
Physical Laboratory, Teddington, Middlesex. 
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space. In  $ 3 a discussion is given which leads to the conclusion that, when the concentra- 
tion in the L regions is very strong and the condition on the geometrical arrangement of 
the L regions is fulfilled, the phase distributions are very likely to become almost or 
completely non-overlapping, and consequently the quasi- or true gaps are very likely to 
appear. I n  $4 the results of the numerical computation of the phase distributions are 
reported, which demonstrate that the gaps in the spectrum of the liquid-like Kronig- 
Penney model are none other than the intervals in which the almost or complete non- 
overlapping of the distributions occurs. Conclusions are given in § 5 .  A brief discussion 
on the ergodic nature of the phase distribution functions is given in the appendix. 

2. Theory 

formalism.? Let the transfer matrix at a site of the chain be 
Consider any one-dimensional chain which can be described by the transfer-matrix 

A B  
= (B* A*) 

where the elements contain an energy parameter A. T h e  matrix Q may be assumed to be 
unimodular. 

Let us denote the state vector and the state ratio at this site by X =  (x, y)’ and z z x/y, 
respectively, and the corresponding quantities at the next site by X’ ( x ’ , Y ’ ) ~  and 
z’ = x’/y’ .  Then these quantities are related by 

and 
X’ = QX 

2’ = -- 
B * ~  + A*’ 
A x + B  

Differentiating equation (2.3) with respect to x, we have 

dx’ 1 
dz (B*x + A*)2’ 
_ -  - 

The  phase 6 of a state ratio x is defined by 

(2.4) 

x = e{*. (2-5) 
This is consistent with the transformation (2.3) in view of the fact that Q is unimodular. 
Equation (2.4) then gives 

IB12(I~12 + ]y12) + Ix[2+2L%(BA*x*y) 
(2.6) - IA.z+B/~ = - 

Ix’I2 + Iy’I2 = ( I X ~ ~ +  \ ~ 1 ~ ) ( 2 1 B / ~  + 1) +4W(BA*x*y) 

dS -- 
d6’ IY l2  

On the other hand, we obtain, from equation (2.2), 

(2.7) 
which gives, together with (2.5), a simple relation 

This means that the length of the state vector, or the absolute value of the amplitude of the 
solution (which satisfies the boundary condition at the end of the system from which one 
starts the transfer), increases or decreases at the site under consideration according as 
dS/dS‘ > 1 or < 1. 

t For details on the formalism of the transfer matrix (phase theory), see Hori (1968). 
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It is an easy matter to investigate the extension of the lengthening and shortening regions 
of x in which the state vector is lengthened and shortened, respectively. The  function 
Ax+B gives a circle-to-circle mapping on the complex plane. Since z is on the unit 
circle, Ax+ B lies on the circle with the centre at B and the radius IA I. AS. jAj2 = IBP + 1, 
this circle passes through the ends C and D of the diameter of the unit circle which is 
orthogonal to the vector B (figure 1). The quantity ]Ax+ Bj2, and hence d6/dS', is smaller 

Figure 1. The construction of the L and S regions. 

than unity on the arc CED of the circle Ax+B, and larger than unity on the arc CFD. 
Therefore it is clear that when the state ratio x is on the arc GIH of the unit circle, which is 
mapped on the arc CED by the transformation Ax+B, the length of the state vector 
decreases, and when x is on the arc GJH it increases. Thus the arcs G I H  and GJH give 
the shortening and lengthening regions (in short, S and L regions), respectively. I t  is to be 
noted that the L region is always wider than the S region. The  derivative dSjdS' takes the 
maximum value IAl+ / B /  at J and the minimum value lAl - /Bl at I, the product of these 
extrema1 values being equal to unity. 

If Q is hyperbolic, i.e. if 19.A 1 > 1, its two eigenvalues 0 * are real and the limit points 
x * of the transformation (2.3) lie on the unit circle : 

B 

(2.10) 

Since l0+1 < 1 and l0-i > 1, the source point x+ ani, the sink point x- must lie in the 
S and L region, respectively. When Q is elliptic, x* do not lie on the unit circle. 

If the direction of the transfer is reversed (backward transfer), the transfer matrix 
must be replaced by 

(2.11) 

Other formulae remain completely the same as above, except that A and B must be replaced 
by A* and -B, respectively. I t  is easy to show that the motion of the state ratio on the unit 
circle now becomes a mirror image of that for the forward transfer with respect to the 
diameter orthogonal to B (CD in figure 1). Since it is clear that the source and sink points 
now interchange their role, these points must be just mirror images of each other with 
respect to CD, as can easily be verified. Also the positions of the S and L regions for the 
backward transfer must be given by the mirror images of those for the forward transfer. 
Now the sink x- lies in the S region, while x+ lies in the L region. 
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3. General considerations 
It is known that for any regular lattice, that is the lattice which can be described by 

only one transfer matrix Q, the eigenmodes cannot be localized. This means that the 
sample degree of localization L,  or the average value of log(dS/dS’), must vanish, i.e. the 
distribution functionf(6) of the phase must be such that 

For this to be the case, the distribution must be more concentrated in the S region than in 
the L region, since the S region is always narrower than the L region, as was shown above, 
and the values of dSjdS‘ in these regions are roughly inversely proportional to each other 
(see (2.10)). The  state ratio must ‘walk’ on the unit circle by adjusting its speed in such a 
manner that its ‘footprints’ are denser in the S region than in the L region. 

In  the case of a disordered system, however, such a self-adjustment cannot be expected. 
For such a system cannot be described by only one transfer matrix Q, but must necessarily 
be described by a set of matrices QCi) (i = 1, 2, ..., S ;  S > 1). The  state ratio z is succes- 
sively transformed by a random sequence of Qci)’s, and its motion on the unit circle becomes 
a random walk. Unfortunately, it is, in general, difficult to investigate analytically how the 
distribution f(8) is modified by such a randomness, and we are obliged to compute it 
numerically. However, a qualitative argument can be given. As a simple example, let us 
consider an isotopically disordered diatomic chain. Let the masses of isotopes be m(O) 
and m(1) (m(O) < m(l)) ,  and let us take do) as the standard mass, i.e. we define the wave- 
number parameter ,kl by 

4 K  
u2 = --sin2p 

“0)  

where K is the force constant. Then the transfer matrices at the light and heavy atoms 
become 

and 

(3.4) 
iQ tan p)  e2i4 iQ tan p e-2iB 

(1 - iQ tan p) e-2ib 
Q(1) = ( ( l +  

- iQ tan p e2i4 

respectively, where Q = m(o)/m(l) - 1. 
For the matrix Qco) we have 

so that there is neither an L nor an S region. This can be considered as a reflection of the 
fact that in Q(0) the elements B and B* vanish, so that there is no definite mirror image 
axis. 

First, let us consider the /3 values at which QcO) and a(’) are both elliptic. When the 
chain is composed of heavy atoms only, the state ratio walks more slowly in the S region 
than in the L region (of the matrix Qcl)), so that its footprints are denser in the former. If 
the light atoms are introduced, however, it walks at these atoms always by the constant 
step 4p. Hence the tendency to walk slowly in the S region and rapidly in the L region 
must more or less be weakened, and the overall distribution of the footprints must become 
more or less uniform. In  other words, the introduction of the randomness brings about the 
tendency for the phase distribution to be concentrated in the L region. As a result, the 
average value of log(d8ldS’) becomes positive, so that the state vector is lengthened on the 
aver age. 



318 J. Hori 

When Q(l) is hyperbolic, the state ratio is strongly attracted by the sink point x- at the 
heavy atoms. Since x- lies in the L region, as was noted above, the tendency for the distri- 
bution to be concentrated in the L region must be enhanced greatly, and the state vector 
must be lengthened still more rapidly. 

If the direction of the transfer is reversed, the situation does not change, and it is again 
expected that the phase distribution tends to be concentrated in the L region (for the back- 
ward transfer) and the state vector is lengthened on the average. This can be shown to 
imply that the eigenfunctions must be localized, and the degree of localization is measured 
by L. For this reason E is called the degree of localization. 

These observations have been confirmed in H M  by numerical calculation of the 
phase distribution. When QC0) and QC1) were both elliptic f(S) was more concentrated in 
the S region, but E was positive. This shows that the above-mentioned tendency for 
f(S) to be concentrated in the L region induced by the randomness is actually working 
(figure 3a of HM). When Q(l) was hyperbolic, f(S) was remarkably concentrated in the 
L region, being peaked at the sink phase 8- of Qcl) (figures 3b and 3c of HM), just as 
expected above. 

In  the more general case, in which the number of the transfer matrices is larger than two, 
the situation generally becomes much more complicated. However, if the L regions of all 
the Q(') 's largely overlap one another, we may well expect the situation to be similar to the 
above. Let us denote the L and the S region of the ith transfer matrix by L(i) and 
S({) respectively. In  such a case both the intersections IIL(a) and IIS(i) are non-vanishing, 
and both the sums EL({) and ZS(i) have the extensions less than 2v (figure Z), and we can 

F o r w a r d  phase d i s t r i b u t i o n  

F o r w a r d  
t r a n s f e r  

) L  r e q i o n s  I J 

B a c k w a r d  
t r a n s f e r  - 

0- -- 3 t req ions { 
CSL" TILL" 

Tis"' cl"' 

\ Backward phase d i s t r i b u t i o n  

Figure 2 .  Concentration of the phase distributions in the neighbourhoods of IIL"). 

expect that owing to the randomness the phase distribution tends to be concentrated in 
This tendency will be particularly remarkable when some of the matrices Q C i )  are 

hyperbolic, and will become stronger as the number of the hyperbolic matrices increases. 
I n  fact, if all the matrices are hyperbolic, it can be shown that the distribution must be 
completely concentrated in the interval spanned by the sink phases S(i)  of Q c i )  (sink-phase 
interval), as is shown in figure 3 (Hori 1968). 

Also for the backward transfer the situation must be the same, except that the 
geometrical arrangement of the regions I'IL((), EL(() and C.S(i) becomes different. 
(Although for each individual matrix the L regions for the forward and backward transfers 
are the mirror images of each other, the regions IIL(i) or for the two directions of 
transfer are not necessarily each other's mirror images.) If all the matrices are hyperbolic, 
the phase distribution must be completely concentrated in the interval spanned by the 
source phases S-( i )  of the Qcr)  (source-phase interval), as is shown in figure 3. 
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If all the matrices are hyperbolic and the sink- and source-phase intervals are disjoint, 
the forward and backward phase distributions are therefore completely non-overlapping. 
Since when the two distributions are non-overlapping the phase matching cannot occur 
between the solutions constructed from the opposite ends of the system, the energy interval 

F o r w a r d  p h o s e  
d i s t r i b u t i o n  

I .  ~~ 

, '  
1 ;  L r e q i o n s  ond 

s i n k  p h a s e s  

2-77 O- L r eq ions  and 
s o u r c e  p h a s e s  

- I - 

Figure 3. Concentration of the phase distributions in the case where all the transfer 
matrices are hyperbolic. 

in which the distributions are non-overlapping must give a spectral gap. Thus, if all the 
Q C i )  are hyperbolic and the sink- and source-phase intervals are disjoint, the energy under 
consideration must lie in a spectral gap. This is just the theorem of Hori and Matsuda 
which plays the basic role in the phase theory (Hori and Matsuda 1964, Hori 1968). The  
energy gaps which have been predicted by the phase theory are no other than the energy 
intervals which fulfil the conditions of this theorem. 

Inasmuch as there is a strong tendency for f ( 6 )  to be concentrated in ZL(I), in particular 
when the number of hyperbolic matrices is large, we obtain the following expectation. Even 
if not all of the Q C i )  are hyperbolic, the phase distribution is completely or almost completely 
concentrated in a relatively narrow interval contained in ZL(I) (figure Z), provided the 
energy under consideration lies sufficiently near a gap predicted by the Hori-Matsuda 
theorem, or, if not, at that energy the number of the hyperbolic matrices is sufficiently 
large. If, in addition, the intervals in which the forward and backward phase distributions 
are concentrated are disjoint, or nearly disjoint, the distributions become completely 
or almost non-overlapping. Then the energy under consideration must lie in a gap or 
quasi-gap, according as the non-overlapping is complete or almost complete. 

Thus it has been shown that, if the condition of disjointness of the L regions stated 
just above is fulfilled, we can expect that there appear true or quasi-gaps which are wider 
than those which have hitherto been predicted by the phase theory, or which lie at the 
energies where the phase theory has failed to predict any gaps. Since whenf(6) is strongly 
concentrated in ZL(i) the localization must be accordingly strong, it is naturally to be 
expected that the wave functions near these gaps are strongly localized. 

In  the next section it will be shown that in the case of the liquid-like Kronig-Penney 
model the two distributions are in fact almost completely concentrated in certain narrow 
intervals, which are completely or nearly disjoint, at the energies lying in the gaps 
found numerically, but outside the gaps predicted phase-theoretically. 

4. Numerical calculations and discussions 
I n  order to demonstrate that the suppositions presented in the preceding section are 

correct, we calculated the forward and backward phase distributions at several energies for 
the same model considered by Borland and Bird (1964), that is, a liquid-like disordered 
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Kronig-Penney model described by the Schrodinger equation 

where V is the strength of the delta potential, and the separations 1, = x t C l  -x i  between 
the neighbouring potentials are distributed for all values of i according to a probability 
density function P(Z) of the form 

1 

Borland and Bird calculated the spectral density p(v) of this system for several values of 
the parameters 

h = i V ( 1 )  
v = 21/E/V (4.3) 
U = 61245 ( I ) .  

Some of their results are shown in figure 4. The horizontal arrows indicate the energy gaps 
of the regular chain with the spacing ( I ) .  The thick bar indicates the gap which has been 
predicted by the phase theory. It is seen that the calculated gap is slightly wider than the 
predicted one. The  other two gaps appear at the energies where no gaps have been pre- 
dicted by the phase theory. 

- 
- 
- 

0.1 - 
- 
- 
- 
- 

I I I I I I 1 \ 1 1  I 1 I I I 1 1 I I 
0 5.0 10.0 15.0 

V 

Figure 4. The densities of energy spectrum of the liquid-like Kronig-Penney model 
calculated by Borland and Bird. (After Borland and Bird 1964.) 

The  elements of the transfer matrix describing the ith cell of the system are given by 
fHori 1968) , 

iV 
2k 

BI = -exp(-ikZi). 
(4.4) 
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The relation between the phases at the ith and (i+ 1)th cells are therefore given by 

A, exp( iai) + Bi 
B, exp( is,) + A, 

exp(i6i+l) = (4.5) 

according to (2.3). We constructed the sample chains with 10 000 potentials, and calculated 
the forward and backward phase distribution functions f( 6) by computing the successive 
phases by (4.5) and its inverse transformation, respectively. At the same time the degree 
of localization 1 10000 - 

L = -- C loglAiexp(i6,)+B,12 
104 i = l  

o r  
1 10000 

-- - loglA,* exp(i6,)-B,I2 
104 2 = 1  

was computed. 
The  functionf(6) was calculated as a histogram f k ,  k = 1, 2, ,.., 40, with the interval 

A6 = 2n/40. For this value of A6 the sample fluctuation was found to be reasonably 
small, as may be seen in figure 5, where the forward distributions calculated on two 

5 3 0 b  5001 

v =7.5 

1500- 

1000- 

500- 

0 2c 0 25 0 2r 
U 

Figure 5. Sample fluctuations in the calculated forward phase distributions at v = 6.0 
.andv = 7.5 for U = 0.04. 

different sample chains are shown for Y = 6.0 and v = 7.5. (See also figure 6, where the 
distribution on another different sample is shown for each of these v values.) There are no 
remarkable differences in the curves for different sample chains. It is to be noted that, for 
v = 7.5 ,  we obtained a few scattered intervals where fk had very small values (1-3). How- 
ever, the 6 values responsible always occurred among the first fifteen 6's to be computed. 
This means that the small values of fk in these scattered intervals have been brought about 
by the end effect, and must be regarded as spurious as far as one is investigating the spectral 
properties of very long (ideally infinite) chains. T h e  histograms in figure 5 are the ones 
which were obtained by discarding such spuriousf, values. T h e  same remark applies to 
every curve in the following figures which are completely concentrated in a narrow sub- 
interval cf (0,2n). 
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Figure 6 shows the forward and backward phase distributions and the values of the 
degree of localization calculated for several energies around the first gap in the case of 
U = 0.04. The forward and backward distributions are indicated by the full and broken 
curves respectively. The values of L calculated had considerable sample fluctuations, but 
almost all of them were consistent to two decimal places, and in the figure only the con- 
sistent parts are shown. The thick black and white bars indicate the intervals llL(i) for the 
forward and the backward transfers, respectively. 

I 
v = 7.3  
i= 0.18 

U =  6.0 
L =  0.00 

5001 

o i  G, G, G, H L ~ 5  2* 
H, 
= 

2000; 
I 

1 

15004 

I I 
,ooo! 

r 
500- 

u = 7 . I  
i= 0.03 

I n  

1000- 

500- 

(U1 

u . 7 - 5  
z = 0 . 2 5  I 

1500 

1000 

50C I 
L 
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v = 7.7 
L =  0.19 

'500i 

i l  
v =  9 . 0  

5001 i= 0.00 

I 

Ohi kL I ti G,, G, 
H. 

Figure 6. The values of the degree of localization and the forward and the backward 
phase distributions calculated for U = 0.04 at the energies around v = 7.5.  The 
broken lines indicate the backward distributions. The horizontal black and white bars 
indicate the intervals ITL(') for the forward and the backward transfers, respectively. 
Gi and Hi indicate the values of G and H respectively for the backward transfer. (For 
the backward transfer these values were found to be almost independent of 1, the separa- 
tion.) G, and H. indicate the values of G and H for the shortest separation for the 
forward transfer. GI and H ,  indicate the values of G and H for the longest separation 

for the forward transfer. 

At v = 6.0 the distributions are rather concentrated in the interval l-IS(L),  but since the 
value of L is positive, though small, one should consider that the effect of the randomness 
expected in the preceding section is already coming into play. As the energy increases, the 
tendency for f(S) to be concentrated in the L regions becomes rapidly strong. At v = 7.1 
the peak of each distribution lies approximately at the edge of the interval l-IL(t), and at 
v = 7.3 most of the area under the histogram is on ITL'"'. At the same time the distribu- 
tions become rapidly peaked, and each distribution becomes almost confined within a 
relatively narrow interval. As a consequence, the overlapping of the forward and the 
backward phase distributions becomes rapidly small. At v = 7.43 the distributions become 
completely non-overlapping. This state of complete non-overlapping lasts until v = 7.6. 
Then the whole situation begins to change in just the reverse direction: the distributions 
begin to overlap again, then become broader and broader. The  situations at v = 7-7, 
v = 7.9 and v = 9.0 are quite similar to those at v = 7.3, v = 7.1 and v = 6.0, respectively. 

From figure 4 it is seen that the interval from v = 7.43 to v = 7.6 corresponds to the 
empirical gap found by Borland and Bird. This implies that the calculated gap can be 
explained as an interval where the two distributions are non-overlapping, in spite of the 
fact that not all of the transfer matrices are hyperbolic. It is to be noted, however, that the 
interval (7.43, 7.6) seems to be somewhat narrower than the calculated gap. This pre- 
sumably means that a very small overlapping of the phase distributions, which occurs on 
both sides of the interval (7.43,7.6), does not give rise to a numerically perceivable spectral 
density. Moreover, we may well suspect that also in the interval (7.43, 7.6) the non- 
overlapping is really not complete. T o  examine this, we calculated at some energies in this 
interval the phase distributions on several different sample chains. It was found that a few 
distributions were accompanied by a non-spurious tail, which may give rise to a very 
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slight overlapping. Thus it is highly probable that the non-overlapping found above is not 
genuine, but merely so slight that it does not bring about any numerically detectable spectral 
density. It can be concluded, therefore, that the empirical gaps are the intervals throughout 
which the phase distributions are almost non-overlapping, such that the spectral density is 
extremely small. In  other words, these gaps are quasi-gaps. 

I t  was also found that at the energies around v = 15.5 the concentration in the L regions 
becomes strongest in the midst of the gap of the regular chain, but here it is not sufficient 
to make the distributions almost non-overlapping. Hence no quasi-gap appears. 

Similar calculations were also carried out for the case of U = 0.01. At the energies 
around v = 7.5 it was found that the general characteristic is completely similar to that for 
0 = 0-04. The almost complete non-overlapping takes place in the interval (7.22, 7.8), 
which is only very slightly narrower than the gap predicted numerically by Borland and 
Bird. The  only important difference is that in the interval (7.30, 7.71). the widths of the 
distributions become much narrower than in the case of 0 = 0.04. This is natural because 
this interval is the true spectral gap predicted phase-theoretically, and the phase distribu- 
tions must there be really non-overlapping. At the energies around v = 15.5, the situation 
was found to be much the same as for v = 7.5 and U = 0.04. 

In  figure6 it is clearly demonstrated that the value of the degree of localization L 
increases very rapidly with the increase of the concentration of the phase distribution in the 
L regions. Thus it is seen that the strong localization of the wave functions is intimately 
connected with the appearance of the quasi-gaps, through the strong concentration of the 
phase distributions. 

5.  Conclusions 
It has been shown that the gaps in the spectrum of the liquid-like Kronig-Penney 

model, which were found numerically and which lie outside the gaps predicted phase- 
theoretically, just correspond to the energy intervals in which the forward and backward 
phase distributions are almost non-overlapping. Inasmuch as such a non-overlapping is a 
consequence of the strong concentration of the phase distributions in the L regions, which 
leads to the strong localization of wave functions, this gives a natural explanation of the fact 
that the eigenfunctions are always strongly localized near the edges of these energy gaps. 

The characterization of the spectral gaps or quasi-gaps as the intervals in which the 
phase distributions are completely or almost completely non-overlapping will be useful for 
investigating the gap problems in other one-dimensional systems as well as in the higher- 
dimensional systems, although in the latter the argument may become much more involved. 
It will also be possible to relate the spectral density to the degree of overlapping of the 
phase distribution. This will be of value especially in the investigation of the behaviour 
of the spectrum near the gaps. 
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Appendix 
In  this paper it was unnecessary to worry about either the ergodicity or the uniqueness 

of the phase distribution function, because the phase distributions on sample chains were 
calculated directly. In  the analytical discussions, however, one is obliged to consider the 
ensemble phase-density function in place of the sample phase distribution, on the assump- 
tion of ergodicity. It will be of some value, therefore, to give a brief discussion on the 
ergodicity and the uniqueness of the phase distribution. 
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That the phase distribution function has the ergodic property is almost evident from the 
fact already mentioned in the text that, except for relatively small sample fluctuations, 
all the histograms calculated on the different sample chains coincide well with one another. 
The  fact that the ensemble phase-density function calculated by Roberts and Makinson 
(1962) has the form very similar to our histogram also supports this conclusion. 

In  order to confirm this point further, we calculated, for some energies, two series of the 
successive phases act) and on the same sample chain by starting from two different initial 

99021 9903) “ * )  10001 
with ay), ay), ..., S$2,’02, ,.., 6\~oo,, it was found that for the energies around a gap 
the difference between S l l )  and 812) decreases very quickly with the increase of i, while for 
the energies distant from the gaps the phase forgets its initial value much more slowly. In  
any case, however, the phase does forget its initial value. Thus it can  ell be expected that 
for every energy there exists a unique phase-density function which closely represents the 
phase distribution on the individual sample chain. 
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